VLSI Circuit Design
Digital CMOS VLSI provides a fantastic template for creating and engineering communication and control circuitry. Research focuses on architecture, circuit styles, and CAD. The Pentium front end is an example.
Performance validation and CAD for multi-GHz circuits
Many second order effects are becoming significant in multi-GHz circuits. A primary DSM effect studied is the variation created through multiple input switching (MIS), and how to generate and prune the worst case vectors. Research is also focused on evaluating and mitigating the effects of process variation.
Relative Timing Verification
Function and timing in circuits are highly interrelated. Verifying the timed behavior using timing variables has been relatively unsuccessful due to computational complexity. The novel Relative Timing research moves timing into the logic domain through relative logic relationships on the ordering of signal transitions. These techniques show order-of-magnitude improvement using SAT methods over the previous best approaches.
Asynchronous Circuits and Systems
Unclocked circuits have been designed to give significant improvement in performance, latency, and energy over designs with clocks, such as the Pentium front end and the post office chip. Research into correct application of this technology into system VLSI design and SOC integration shows further benefit.
Communication Networks and Synchronization
Current design technology favors design re-use. Integrating modules that run at various frequency and bandwidth requirements require flexible, high throughput, low latency communication networks that can synchronize different frequencies.
Contact us:
- Professor Ken Stevens: kstevens@ece.utah.edu